On GO-compact spaces
نویسندگان
چکیده
منابع مشابه
On αψ –Compact Spaces
The objective of this paper is to obtain the properties of αψcompact spaces by using nets, filterbase, αψ-complete accumulation points and so on. We also investigate some properties of αψ-continuous multifunctions and αψ-compact spaces in the context of multifunction.
متن کاملOn function spaces of Corson-compact spaces
We apply elementary substructures to characterize the space Cp(X) for Corsoncompact spaces. As a result, we prove that a compact space X is Corson-compact, if Cp(X) can be represented as a continuous image of a closed subspace of (Lτ ) × Z, where Z is compact and Lτ denotes the canonical Lindelöf space of cardinality τ with one non-isolated point. This answers a question of Archangelskij [2].
متن کاملCompact operators on Banach spaces
In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...
متن کاملLipschitz Spaces on Compact Manifolds
Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...
متن کاملOn Lowen's fuzzy compact spaces
In this paper, we obtain an axiomatic characterization of Lowen's fuzzy compactness. KeywordsMathematics, fuzzy sets, Topology, Lowen's compactness, operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2008
ISSN: 0354-5180
DOI: 10.2298/fil0801045c